88 research outputs found

    Semi-tied Units for Efficient Gating in LSTM and Highway Networks

    Full text link
    Gating is a key technique used for integrating information from multiple sources by long short-term memory (LSTM) models and has recently also been applied to other models such as the highway network. Although gating is powerful, it is rather expensive in terms of both computation and storage as each gating unit uses a separate full weight matrix. This issue can be severe since several gates can be used together in e.g. an LSTM cell. This paper proposes a semi-tied unit (STU) approach to solve this efficiency issue, which uses one shared weight matrix to replace those in all the units in the same layer. The approach is termed "semi-tied" since extra parameters are used to separately scale each of the shared output values. These extra scaling factors are associated with the network activation functions and result in the use of parameterised sigmoid, hyperbolic tangent, and rectified linear unit functions. Speech recognition experiments using British English multi-genre broadcast data showed that using STUs can reduce the calculation and storage cost by a factor of three for highway networks and four for LSTMs, while giving similar word error rates to the original models.Comment: To appear in Proc. INTERSPEECH 2018, September 2-6, 2018, Hyderabad, Indi

    Very Deep Convolutional Neural Networks for Robust Speech Recognition

    Full text link
    This paper describes the extension and optimization of our previous work on very deep convolutional neural networks (CNNs) for effective recognition of noisy speech in the Aurora 4 task. The appropriate number of convolutional layers, the sizes of the filters, pooling operations and input feature maps are all modified: the filter and pooling sizes are reduced and dimensions of input feature maps are extended to allow adding more convolutional layers. Furthermore appropriate input padding and input feature map selection strategies are developed. In addition, an adaptation framework using joint training of very deep CNN with auxiliary features i-vector and fMLLR features is developed. These modifications give substantial word error rate reductions over the standard CNN used as baseline. Finally the very deep CNN is combined with an LSTM-RNN acoustic model and it is shown that state-level weighted log likelihood score combination in a joint acoustic model decoding scheme is very effective. On the Aurora 4 task, the very deep CNN achieves a WER of 8.81%, further 7.99% with auxiliary feature joint training, and 7.09% with LSTM-RNN joint decoding.Comment: accepted by SLT 201

    Label-Synchronous Neural Transducer for End-to-End ASR

    Full text link
    Neural transducers provide a natural approach to streaming ASR. However, they augment output sequences with blank tokens which leads to challenges for domain adaptation using text data. This paper proposes a label-synchronous neural transducer (LS-Transducer), which extracts a label-level encoder representation before combining it with the prediction network output. Hence blank tokens are no longer needed and the prediction network can be easily adapted using text data. An Auto-regressive Integrate-and-Fire (AIF) mechanism is proposed to generate the label-level encoder representation while retaining the streaming property. In addition, a streaming joint decoding method is designed to improve ASR accuracy. Experiments show that compared to standard neural transducers, the proposed LS-Transducer gave a 10% relative WER reduction (WERR) for intra-domain Librispeech-100h data, as well as 17% and 19% relative WERRs on cross-domain TED-LIUM 2 and AESRC2020 data with an adapted prediction network

    Integrating Emotion Recognition with Speech Recognition and Speaker Diarisation for Conversations

    Full text link
    Although automatic emotion recognition (AER) has recently drawn significant research interest, most current AER studies use manually segmented utterances, which are usually unavailable for dialogue systems. This paper proposes integrating AER with automatic speech recognition (ASR) and speaker diarisation (SD) in a jointly-trained system. Distinct output layers are built for four sub-tasks including AER, ASR, voice activity detection and speaker classification based on a shared encoder. Taking the audio of a conversation as input, the integrated system finds all speech segments and transcribes the corresponding emotion classes, word sequences, and speaker identities. Two metrics are proposed to evaluate AER performance with automatic segmentation based on time-weighted emotion and speaker classification errors. Results on the IEMOCAP dataset show that the proposed system consistently outperforms two baselines with separately trained single-task systems on AER, ASR and SD.Comment: Interspeech 202
    • …
    corecore